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Ditfraetion Intensities from a Cluster of Curved Crystallites. III. The Three-Dimensional Case 
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A general expression for the intensity of X-rays diffracted by a conglomeration of identical cylindrical 
crystallites with a given angular opening and with axes oriented randomly with respect to the incident 
beam has been worked out. This expression leads directly to the expressions derived by Mitra 
for one- and two-dimensional curved crystallites. For cylindrical shells the peaks are highly asymmetri- 
cal. They become sharper and shift towards the higher-angle side as the shell axes become more tilted 
with respect to the normal to the plane containing the incident and the equatorially diffracted beams. 
The overall nature of the diffraction pattern remains the same. The effect of increasing the number of 
scattering centres on each arc is found to be only to increase the peak heights and their sharpnesses. The 
effect of radial thickness is to cause a peak shift and to give rise to additional peaks. The peak heights 
are increased and become sharper as the radial thickness increases. The effect of curvature is an increase 
in the number of peaks, an increase in the general background level of scattering and a decrease in the 
t~eak heights. 

Introduction 

In the course of two previous publications [Mitra (1965) 
and Mitra & Bhattacherjee (1968) hereafter referred to 
as I and II respectively], an elementary theory of dif- 
fraction by an axially parallel aggregate of curved crys- 
tallites has been developed and a general expression for 
two-dimensional curved crystals has been derived. In 
the treatment, both the incident and the diffracted 
beams have been assumed to lie in the same plane as 
the two-dimensional crystallites. The expression de- 
rived is satisfactory in the sense that for the extreme 
cases of zero curvature and of equiangularly spaced 
atoms arranged on the circumference of a circle, it 
leads, as expected, respectively to Bragg's law and to 
the expression derived by Blackman (1951) for a cir- 
cular lattice. This expression has also the further prop- 
erty of taking into account the angular opening of the 
curved crystallites as is the case with the expression 
derived by Kunze (1956). A further virtue of this ex- 
pression is that it is a finite series of terms containing 
Bessel functions of order zero (in contrast with infinite 
series of Bessel functions of very high order in the ex- 
pression of the above authors) rendering the task of' 
numerical evaluation comparatively easy, H.ow~ver, it 

would be more realistic to consider an agglomeration 
of identical cylindrical crystallites with a given angular 
opening and with axes oriented randomly with respect 
to the incident beam - in short, a powder of cylindrical 
fragments. In this paper, it has been attempted to 
achieve this. 

Derivation of the general expression 
for diffraction intensity 

Each crystallite is considered to be built up of an iden- 
tical stacking of T identical layers of the type of ABCD 
[Fig. l(a)], the details being the same as in Fig. 1 of I. 
The stacking along the Z direction is at equal intervals, 
c, as shown in Fig. l(b). The curvature lies in the X Y  
plane. ABCD consists of M concentric arcs at radial 
distances R, R + b, R + 2b, . . . R + rob , . . .  R + ( M -  1)b 
respectively. Each arc has N lattice points arranged 
equiangularly on it so that two consecutive points on 
the same arc subtend an angle ~0 at the point of inter- 
section of the axis OZ with the plane ABCD. The an- 
gular opening is denoted by a parameter Q where 
Q =2rc/N~o. Any lattice point J [Fig.l(b)] in the cylin- 
drical lattice occupies the rth site on the ruth arc on the 
tth stack and is described by (r,m,t). The point A is 
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defined to be (0, 0, 0) in this system. The vector distance 
zrmt of J from O, the origin of the system is given by 

"[rmt =ix(R + mb) sin rq~+iy(R + mb) cos rq~+i~tc (1) 

where ix, iy, iz are unit vectors along the X, Y and Z 
axes respectively. The vector distance ~0 of A from O 
is given by 

x0=iyR.  (2) 

Let the incident and diffracted beams be described by 
unit vectors it0 and ~ respectively with the angle of de- 
viation given by 20. Let s =  e-or0 with Isl = 2 sin 0. It 
is evident that for a fixed value of 0, any rotation of ~0 
will cause a corresponding rotation in s so that Is[ will 
remain unchanged. Thus, random orientation of the 
crystallite with respect to or0 is equivalent to random- 
ness in the values of 7 and x, where ~, is the angle be- 
tween s and OZ and ;(, the angle made by the projec- 
tion of s on the X Y  plane with OX [see Fig. 2(b)]. 

0 ~ X  

Y 
(a) 

A 

Thus 

s = ixs sin ? cos x + iys sin ~ sin x + izs cos ~,. (3) 

The amplitude of the beam diffracted along cr will be 
given by 

2zc 
A(*)= ~, ~ J~(,) exp i ~  (~rrnt+XJ--Z0).(ff--ff0) (4) 

rom,t i 

where fi  is the atomic scattering factor of the type j 
located at distance xj from the lattice point (r,m,t). 
Equation (4) can clearly be written as 

( 2~ ) 
A(s)=F(s)H(s) exp - i T  ~o. s (5) 

with 

and 

2re i(*rmt s) (6) H(s) = ~ exp - ~  . 
rom,t 

F(s) = ~ fi  expi  ~ ( ~ .  s).  (7) 

Obviously the xj's have to be consistent with the cylin- 
drical symmetry of the lattice so that equation (4) is 
transformed into (5). The simplest case is that of a 
single identical atom occupying each lattice site so that 
F(s) =f(s)  for this case. Combining equations (1) and 
(3) with (6) we have 

sin (--~- Tc cos ,)  
In(s ) l  = IG(s ) l ,  (8) 

sin ( ~ s c  cos ,)  

J 

E 

(b) 

Fig. 1. The cylindrical crystallitc with a given angular opening. 
(a) A layer of the bent crystallite in the XY plane. (b) 
Cylindrical shell with axis parallel to OZ. "grmg denotes the 
position of a lattice point J from the origin O in the coor- 
dinate system XYZ, 

QO 

(a) 

$ 

~ X  

(b) 

Fig.2. Orientations of the vector s. (a) Direction of vector 
with respect to the direction of incidence and direction of dif- 
fraction, (b) Ori.entation of s. with respect to X, Y and Z axes. 
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with 

G ( s ) =  ~ ~ expilz(R+mb) s in(rg+x) (9) 
r m 

where 

2 7 ~ S  . 
/~= ~ sm 7. (10) 

The intensity averaged over all values o f  x is given by 

I(s)=<H(s)H*(s)> 

s in2(~ s T c  cos 7) 

) sin 2 ~- sc cos 7 
• <G(s ) .  G*( s )> .  (11) 

sin2 (-~ - sTc cos 7)  
= T 2 

sin2(-~ - sc cos 7) 

but for other values of  10 this function is zero for large 
T and nearly zero for small T. 

Thus, for T> 20 and for an appreciable value of  I(s) 

10 
cos 7 = / (12) 

where 
SC 

l -  2 "  (13) 

Equation (9) is of  the same form as equation (5) of  I. 
Proceeding as in I, introducing 

It is well known that for - -  sc  cos 7 _ lo (an integer) 
2 h ~___ m 
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Fig. 3. Relative intensity at different angles of deviation of X-rays diffracted by a random aggregate of identical cylindrical shell 

fragments with a given angular opening and rl = 1 where r= = c/a and c is the repeat distance in the Z direction. 
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Fig. 4. Relative intensity at different angles of deviation of X-rays diffracted by a random aggregate of identical cylindrical shell 
fragments with a given angular opening and rl = 2 where r ! = c/a and c is the repeat distance in the Z direction. 
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and 
s.b 

k -  2 (14) 

and combining with these, equation (13), we can write 
equation (11) as 

1/ ) I(hklo)= T 2 ~ ~. Jp QN{h + mk¢} 1 - - - f f  
m = 0 n = 0 p = - -  oo 

x , ,  1/1 sir,, ,:15) 
l 2 / sin 2p {o/2 

or 

I(hl°)=T2 [m~0= ,=02 NJo QNh¢{m-n}r  2 - hZr~ ] 

( V( +2y. ~ E(U-q)S0 euh 1- 2~t~ / 
m----0 n = 0  q = ,  r w  2 

x {(1 + mrz¢) z + (1 + nr2~o) z - 2(1 + mr2q~ ) 

x (1 +nrz~o) cos q¢ (16) 

which is identical in form with equation (1) of II. Next 
proceeding as in II, it is easy to see that equation (15) 
can be written as 

M--IM--1 ( V 
I(hkl°)= T2 [m~0= n=0 ~ USo QNk¢{m-n}  1 - l~] l  2 I 

M-,M-,~- ,  ( lg 
+2 ~ ~ ~ (N-q)Jo QN 1 12 

m = O  n = O  q = ,  

x 1/{(h + mk¢) z + (h + nk{o) 2 -  2(h + mk¢).  

where rx = c/a and r2  = b/a respectively. It is quite ob- 
vious that equation (6) of II corresponds to l0 = 0. For 
a system comprising axially parallel cylindrical frag- 
ments, or for a solitary cylindrical fragment rotating or 
oscillating about its axis, equation (16) represents the 
/0th layer in a layered distribution of intensity. For 
random orientations of the crystallites, however, all 
those crystallites which obey equation (12) will be in a 
position to diffract and the diffraction pattern will have 
spherical symmetry resulting in Debye-Scherrer rings 
when photographed. The rings will be sharp or diffuse 
depending on the parameters in equation (16). The dif- 
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Fig. 5. Relative intensity of X-rays diffracted by an axially parallel (lo = 0) aggregate of identical cylindrical shell fragments with 
(a) angular opening N¢=0°, 30°! 70 °, 
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Fig. 5 (cont.) (b) angular~opening = 10 °, 50 °, 

fuse rings may also be bridged by regions of continuous 
scattering. 

12C 

11C 

T h e  c a s e  o f  a cy l indr i ca l  she l l  ,oo 

For a cylindrical shell, one un]t thick in the radial di- ,o 
rection rz=0  and equation (16) takes the form 8o 

N--1 
I(hlo)= T z N+ 2 ~ (N-q)Jo  ~ , o  

a=l 

x (2QNh 1 - r ~  sm . (17) 

For the case of zero curvature, equation (17) becomes '° 

N-1 V I~ ~] a0 
I(hlo)=T 2 [N+2Z(N- -q )Jo (2zqh  1-- .(18) 

L ~=1. ~ ~ r~ h2 ] j 20 

1(3 Equation (17) clearly shows that in the domain h > lo/rl 
the effect of lo~0, is merely to shift the diffraction 
pattern from that due to Io = 0 towards a larger value 
of h given by ~t2--~o/r~. W h e n  h < lo/r t, the argument 
of the Bessel function becomes imaginary and increases 
as h decreases. As is evident from Figs. 118 and 119 of 

'0'2 o',:00 S ~' 

N-20 
-x--~t--~ N. 100 

5OO 

L ,oo 

h " -~  

Fig. 6. Relative intensity at different angles of deviation of 
X-rays diffracted by an agglomeration of axially parallel 
(10=0) identical cylindrical shell fragments having Q=36 
and (a) N=4,  (b) N=20,  (c) N = 100, 
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Jahnke & Emde (1945), Jo(ix) with x real goes on in- 22 
creasing monotonically with x. Thus, in the domain 
h< lo/rl, I(hlo) of equation (17) will go on increasing 20 
monotonically as h approaches zero. Hence all the con- 
siderations for a single arc discussed in I and II will be 18 
equally valid (except for the form of the peak at h = 0) 
in this case also, only with the distribution shifted to- 16 
wards the higher value side of h. It is also clear that 

14 
when rl is small this shift will be larger than when r~ is 
large. Hence the interlayer distance c will merely affect 112 
the shift. These effects have been shown in Figs. 3 and 4 
which show results of calculations for N =  20, N~0 = 10 °, " lo 
M =  1 and l0 = 0,1,2 for two different values of rx viz. 
rx = 1,2. Fig. 3 which represents I(h) against h for rx = 1, 8 
shows that the first peak is at h = 1.02 in the case for 
l0 = 0 and the corresponding peaks for l0 = 1 and 2 are 6 
found to be at about h = 1.43 and h = 2.45 respectively. 
Fig. 4 shows that the peak at h = 1.02 for l0 = 0  shifts 4 
to h = 1.14 and h = 1.43 for l0 = 1 and 2 respectively when 2 
rl =2.  

Similarly from Fig. 3 it is observed that the second c 
maxima are in the neighbourhood of  h = 2.02 and h = 
2.25 corresponding to l0 = 0 and lo = 1 respectively. For  
10 = 2 this maximum (not shown in Fig. 3) is found to be 
formed at h=2.85.  Fig, 4 shows the peak in the neigh- 2o 
bourhood of h = 2.02 shifts to h = 2.08 and h = 2.25 cor- 
responding to/0 = 1 and 2 respectively. 18 

The half intensity widths of  the first maxima have 16 
been measured from the graphs and in units of  h, are 
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Fig.7.  Relat ive intensity at different angles of  deviat ion of  
X-rays  diffracted by an aggregate of  axially parallel identical 
cylindrical crystallites having different radial thickness with 
rz = 1~ N= 4 and (a) NiP = 0 o, 
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Fig. 7 (contJ (b) N~o=30°,(c) N~o=60 °. 

equal to 0.085, 0.060, 0.035 (for rl = 1) and 0.085, 0.065, 
0.050, (for rl = 2) corresponding to 10-- 0,1,2 respec- 
tively. Figs. 3 and 4 show further that the peaks are 
highly asymmetrical. 

These observations clearly show that in the case of 
cylindrical shells, peaks are highly asymmetrical and 
the asymmetry remains more or less unchanged with 
the increase in the value of 10. The peaks, however, be- 
come sharper and shift more and more towards the high- 
er angle side as the shell axes become more and mor 
tilted with respect to the Z axis. The effect of increasing 
qis merely to decrease the extent of the shift towards the 
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higher angle side. But the overall nature of the diffrac-lcorresponding to (a) NO = 0 °, (b) NO = 30 °, (c)No = 60 °. 
tion pattern remains the same in all the cases. ~'~ It is observed from the curves that for the same value 

i'~0f the curvature, the peak shifts towards the higher 

Effect of  curvature 

In order to study the effect of curvature on the inten- 
sity pattern, calculations were carried out for N= 100, 
M = I ,  lo=0, and No=O, 10, 30, 50 and 70 ° respec- 
tively. Fig. 5(a) and (b) show the results of these cal- 
culations. The curves show slight variations in peak 
positions and heights. The most important feature is 
the appearance of a number of closely spaced secon- 
dary peaks of gradually decreasing heights on the 
higher angle side of the primary maxima for large 
values of curvatures (N0 > 30°). The number of sec- 
ondary maxima is more in the neighbourhood of h = 2 
than h = 1 for the same value of N0. Also their number 
increases with the increase of curvature. Otherwise the 
general asymmetrical nature of the distribution remains 
the same in all cases. 

Effect of  the number of  scatterers on each arc 

Numerical computations have been carried out for the 
case of M =  1, /o=0, and different values of N for a 
given value of Q. Fig. 6 shows the results of the com- 
putations. Curves (a) and (b) in Fig. 6 represent I(h) 
against h for N--4  and 20 respectively and Q--36 in 
each case. Curve (c), which is plotted in a smaller scale 
(marked on the ordinate at the right end of the Fig. 6), 
for the convenience of representation in the same Fig- 
ure, shows the case for N =  100 and Q =36. It is seen 
from the curves that the first and second peak for 
N =  100 are exactly at h =  1 and 2 respectively. For 
N = 2 0  and 4 the peak in the neighbourhood of h =  1 
is found to be at h = 1.02 and 1.06 while the second one 
is at h--2.02 and 2.07 respectively. 

It has been observed in paper II that these peak 
shifts are a combined and complicated effect of the 
variation of N and 0. In that paper the effect could not 
be studied for large values of N. The present work 
clearly shows that the peak shift is attributable more 
to the smallness of the number of scatterers than to 
the curvature. It is seen that even for N0=70  ° the 
maximum at h = 1 shifts to only h-- 1.01 [Fig. 5(a)] for 
N =  100. Hence the peak shift can be attributed mainly 
to smallness of N and less to the variation of 0. Also 
it is observed, as is expected, that only the sharpnesses 
and the peak heights increase with the increase in the 
number of scatterers on each arc. 

Effect of  radial thickness 

Figs. 7(a), (b) and (c) represent the results of numerical 
computations for N = 4 ;  M = 3 ,  2, 1; rz=l and /0=0 

angle side as the value of M is decreased, while the peak 
heights and sharpnesses of the peaks increase with the 
increase in the value of M. Also some additional peaks 
appear. From these results it appears that the effect 
of radial thickness is to cause a shift of the peak, and 
to give rise to additional peaks. The peak heights are 
increased and become sharper as the radial thickness 
increases. Also a comparison of Fig. 7(a), (b), and (c) re- 
veals that the effect of curvature in radially thick crys- 
tallites is an increase in the number of peaks, an in- 
crease in the general background level of scattering and 
a decrease in the peak heights. It also influences peak 
shift - the higher the curvature the greater is the peak 
shift. 

The case for zero curvature as shown in Fig. 7(a), 
presents an interesting study. Physically it represents 
the zero layer rotation pattern of a cubic crystal, h here 
represents ~/h2+k2 for the hkO planes assuming the 
rotation to be about the (001) axis. Hence h=  1, 1.4 
and 2.2 for (100, 010), (110) and (120) reflexions re- 
spectively. As is to be expected, Fig. 7(a) shows peaks 
at these values of h. It is interesting to note that peaks 
appear in the neighbourhood of the same value of h 
for curvatures given by N0 = 30 and 60 ° for the same 
value of N viz. N=4 .  Thus it appears that even as 
severe a curvature as in the cases discussed does not 
modify the Laue-Bragg conditions of appearance of 
diffraction maxima in a radical way. This point, how- 
ever, needs further and more detailed study which it 
is proposed to carry out in the near future. 

Concluding remarks 

The results of these investigations have not taken care 
of the structure factor F(s). In fact, the actual inten- 
sity pattern is the product of F(s) with H(s), the inter- 
ference term that has been worked out. Hence these 
results can provide only a qualitative explanation of 
experimental results. A quantitative comparision with 
experiments is not possible without complete knowl- 
edge of F(s). 
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